- 正弦定理教學(xué)設(shè)計(jì) 推薦度:
- 余弦定理優(yōu)秀教學(xué)設(shè)計(jì) 推薦度:
- 《秋天》說課稿 推薦度:
- 說課稿 推薦度:
- 美術(shù)說課稿 推薦度:
- 相關(guān)推薦
二項(xiàng)式定理說課稿
作為一位杰出的老師,通常需要用到說課稿來輔助教學(xué),是說課取得成功的前提。那么優(yōu)秀的說課稿是什么樣的呢?下面是小編整理的二項(xiàng)式定理說課稿,歡迎閱讀,希望大家能夠喜歡。
二項(xiàng)式定理說課稿1
高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認(rèn)識。在高一、高二時(shí),是以知識點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個(gè)知識點(diǎn)融會(huì)貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對性,講求實(shí)效。
一、內(nèi)容分析說明
1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
?。?)二項(xiàng)展開式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項(xiàng)式的變形起到復(fù)習(xí)深化作用。
(2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。
(3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問題的一種方法。
2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的
近似值。
二、學(xué)校情況與學(xué)生分析
(1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。
?。?)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標(biāo)
復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復(fù)習(xí)二項(xiàng)展開式和通項(xiàng)。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):
1、知識目標(biāo):(1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個(gè)特征熟記它的展開式。
?。?)會(huì)運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng)。
2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。
?。?)樹立由一般到特殊的解決問題的意識,了解解決問題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
3、情感目標(biāo):通過對二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。
四、教學(xué)過程
1、知識歸納
(1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開式是什么?
②學(xué)生一起回憶、老師板書。
設(shè)計(jì)意圖:①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。
?、跒閷W(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。
(2)二項(xiàng)式定理:①設(shè)問 展開式是什么?待學(xué)生思考后,老師板書
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
?、诶蠋熞髮W(xué)生說出二項(xiàng)展開式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。
?、垤柟叹毩?xí) 填空
設(shè)計(jì)意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。
?、谧冇霉剑煜す?。
(3) 展開式中各項(xiàng)的系數(shù)C , C , C ,… , 稱為二項(xiàng)式系數(shù).
展開式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項(xiàng).
2、例題講解
例1求 的展開式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。
講解過程
設(shè)問:這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?
學(xué)生思考計(jì)算,回答問題;
老師指明①當(dāng)項(xiàng)數(shù)是4時(shí), ,此時(shí) ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,
?、诘?項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。
板書
解:展開式的第4項(xiàng)
所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。
選題意圖:①利用通項(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);②復(fù)習(xí)指數(shù)冪運(yùn)算。
例2 求 的展開式中不含的 項(xiàng)。
講解過程
設(shè)問:①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?
②問題轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰能看出哪一項(xiàng)是常數(shù)項(xiàng)?
師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”
共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。
老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。
板書
解:設(shè)展開式的第 項(xiàng)為不含 項(xiàng),那么
令 ,解得 ,所以展開式的第9項(xiàng)是不含的 項(xiàng)。
因此 。
選題意圖:①鞏固運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng),形成基本技能。
?、谂袛嗟趲醉?xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。
例3求 的展開式中, 的系數(shù)。
解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。
板書
解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。
而 的展開式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的展開式中 的系數(shù)分別是: 。
所以 的展開式中 的系數(shù)為
例4 如果在( + )n的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開式中的有理項(xiàng).
解:展開式中前三項(xiàng)的系數(shù)分別為1, , ,
由題意得2× =1+ ,得n=8.
設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.
有理項(xiàng)為T1=x4,T5= x,T9= .
3、課堂練習(xí)
1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項(xiàng)是
A.14 B.14 C.42 D.-42
解析:設(shè)(2x3- )7的展開式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·
?。ǎ?)r·x ,
當(dāng)- +3(7-r)=0,即r=6時(shí),它為常數(shù)項(xiàng),∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開式中各項(xiàng)系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)
解析:∵(x +x )n的展開式中各項(xiàng)系數(shù)和為128,
∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.
∴n=7.設(shè)該二項(xiàng)展開式中的r+1項(xiàng)為T =C (x ) ·(x )r=C ·x ,
令 =5即r=3時(shí),x5項(xiàng)的系數(shù)為C =35.
答案:35
五、課堂教學(xué)設(shè)計(jì)說明
1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識,形成求二項(xiàng)式展開式某些指定項(xiàng)的基本技能,同時(shí),要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。
2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個(gè)局部展開式的某項(xiàng)系數(shù)時(shí),又有分類討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。
六、個(gè)人見解
二項(xiàng)式定理說課稿2
一、教材分析:
1、知識內(nèi)容:二項(xiàng)式定理及簡單應(yīng)用
2、地位及重要性
二項(xiàng)式定理是安排在高中數(shù)學(xué)排列組合內(nèi)容后的一部分內(nèi)容,其形成過程是組合知識的應(yīng)用,同時(shí)也是自成體系的知識塊,為隨后學(xué)習(xí)的概率知識及高三選修概率與統(tǒng)計(jì),作知識上的鋪墊。二項(xiàng)展開式與多項(xiàng)式乘法有密切的聯(lián)系,本節(jié)知識的學(xué)習(xí),必然從更廣的視角和更高的層次來審視初中學(xué)習(xí)的.關(guān)于多項(xiàng)式變形的知識。運(yùn)用二項(xiàng)式定理可以解決一些比較典型的數(shù)學(xué)問題,例如近似計(jì)算、整除問題、不等式的證明等。
3、教學(xué)目標(biāo)
A、知識目標(biāo):
?。?)使學(xué)生參與并探討二項(xiàng)式定理的形成過程,掌握二項(xiàng)式系數(shù)、字母的冪次、展開式項(xiàng)數(shù)的規(guī)律
?。?)能夠應(yīng)用二項(xiàng)式定理對所給出的二項(xiàng)式進(jìn)行正確的展開
B、能力目標(biāo):
?。?)在學(xué)生對二項(xiàng)式定理形成過程的參與、探討過程中,培養(yǎng)學(xué)生觀察、猜想、歸納的能力及分類討論解決問題的能力
(2)培養(yǎng)學(xué)生的化歸意識和知識遷移的能力
C、情感目標(biāo):
(1)通過學(xué)生自主參與和二項(xiàng)式定理的形成過程培養(yǎng)學(xué)生解決數(shù)學(xué)問題的信心;
(2)通過學(xué)生自主參與和二項(xiàng)式定理的形成過程培養(yǎng)學(xué)生體會(huì)到數(shù)學(xué)內(nèi)在和諧對稱美;
(3)培養(yǎng)學(xué)生的民族自豪感,在學(xué)習(xí)知識的過程中進(jìn)行愛國主義教育。
4、重點(diǎn)難點(diǎn):
重點(diǎn):
(1)使學(xué)生參與并深刻體會(huì)二項(xiàng)式定理的形成過程,掌握二項(xiàng)式系數(shù)、字母的冪次、展開式項(xiàng)數(shù)的規(guī)律;
?。?)能夠利用二項(xiàng)式定理對給出的二項(xiàng)式進(jìn)行正確的展開。
難點(diǎn):二項(xiàng)式定理的發(fā)現(xiàn)。
二、教法學(xué)法分析
為了達(dá)到這節(jié)課的目標(biāo):掌握并能運(yùn)用二項(xiàng)式定理,讓學(xué)生主動(dòng)探索展開式的由來是關(guān)鍵?!皩W(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)”正所謂“學(xué)問之道,問而得,不如求而得之深固也”本節(jié)課的教法貫穿啟發(fā)式教學(xué)原則,以啟發(fā)學(xué)生主動(dòng)學(xué)習(xí),積極探索為主。創(chuàng)設(shè)一個(gè)以學(xué)生為主體,師生互動(dòng)、共同探索的教與學(xué)的情境。通過復(fù)習(xí)引入,引申設(shè)疑,實(shí)驗(yàn)猜想,歸納推廣等環(huán)節(jié)進(jìn)行對此定理的探索。不僅重視知識的結(jié)果,而且重視知識的發(fā)生、發(fā)現(xiàn)和解決的過程,貫切新課程理念。
另外,根據(jù)“近發(fā)展區(qū)的理論”精心設(shè)置問題,調(diào)控問題的解決過程培育這節(jié)課最佳的知識生長點(diǎn)。
三、教學(xué)過程
1、情景設(shè)置
問題1:若今天是星期二,再過30天后的那一天是星期幾?怎么算?
預(yù)期回答:星期四,將問題轉(zhuǎn)化為求“30被7除后算余數(shù)”是多少?
問題2:若今天是星期二,再過810天后的那一天是星期幾?
問題3:若今天是星期二,再過天后是星期幾?怎么算?
預(yù)期回答:將問題轉(zhuǎn)化為求“被7除后算余數(shù)”是多少?
在初中,我們已經(jīng)學(xué)過了
(a+b)2=a2+2ab+b2
(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3
(提問):對于(a+b)4,(a+b)5如何展開?(利用多項(xiàng)式乘法)
(再提問):(a+b)100又怎么辦?(a+b)n(n?N+)呢?
我們知道,事物之間或多或少存在著規(guī)律。也就是研究(a+b)n(n?N+)的展開式是什么?這就是本節(jié)課要學(xué)的內(nèi)容。這節(jié)課,我們就來研究(a+b)n的二項(xiàng)展開式的規(guī)律性。學(xué)完本課后,此題就不難求解了。
?。ㄔO(shè)計(jì)意圖:使學(xué)生明確學(xué)習(xí)目的,用懸念來激發(fā)他們的學(xué)習(xí)動(dòng)機(jī)。奧蘇貝爾認(rèn)為動(dòng)機(jī)是學(xué)習(xí)的先決條件,而認(rèn)知驅(qū)力,即學(xué)生渴望認(rèn)知、理解和掌握知識,并能正確陳述問題、順利解決問題的傾向是學(xué)生學(xué)習(xí)的重要?jiǎng)恿Α#?/p>
2、新授
第一步:讓學(xué)生展開
問題1:以的展開式為例,說出各項(xiàng)字母排列的規(guī)律;項(xiàng)數(shù)與乘方指數(shù)的關(guān)系;展開式第二項(xiàng)的系數(shù)與乘方指數(shù)的關(guān)系。
預(yù)期回答:
①展開式每一項(xiàng)的次數(shù)按某一字母降冪、另一字母升冪排列,且兩個(gè)字母冪指數(shù)的和等于乘方指數(shù);
②展開式的項(xiàng)數(shù)比乘方指數(shù)多1;
③展開式中第二項(xiàng)的系數(shù)等于乘方指數(shù)。
第二步:繼續(xù)設(shè)疑
如何展開以及呢?
(設(shè)計(jì)意圖:讓學(xué)生感到僅掌握楊輝三角形是不夠的,激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新的更簡捷的方法的欲望。)
繼續(xù)新授
師:為了尋找規(guī)律,我們以中為例
問題1:以項(xiàng)為例,有幾種情況相乘均可得到項(xiàng)?這里的字母各來自哪個(gè)括號?
問題2:既然以上的字母分別來自4個(gè)不同的括號,項(xiàng)的系數(shù)你能用組合數(shù)來表示嗎?
問題3:你能將問題2所述的意思改編成一個(gè)排列組合的命題嗎?
?。A(yù)期答案:有4個(gè)括號,每個(gè)括號中有兩個(gè)字母,一個(gè)是、一個(gè)是。每個(gè)括號只能取一個(gè)字母,任取兩個(gè)、兩個(gè),然后相乘,問不同的取法有幾種?)
問題4:請用類比的方法,求出二項(xiàng)展開式中的其它各項(xiàng)系數(shù)(用組合數(shù)的形式進(jìn)行填寫),
呈現(xiàn)二項(xiàng)式定理
3、深化認(rèn)識
請學(xué)生總結(jié):
①二項(xiàng)式定理展開式的系數(shù)、指數(shù)、項(xiàng)數(shù)的特點(diǎn)是什么?
②二項(xiàng)式定理展開式的結(jié)構(gòu)特征是什么?哪一項(xiàng)最具有代表性?
由此,學(xué)生得出二項(xiàng)式定理、二項(xiàng)展開式、二項(xiàng)式系數(shù)、項(xiàng)的系數(shù)、二項(xiàng)展開式的通項(xiàng)等概念,這是本課的重點(diǎn)。
(設(shè)計(jì)意圖:教師用邊講邊問的形式,通過讓學(xué)生自己總結(jié)、發(fā)現(xiàn)規(guī)律,挖掘?qū)W習(xí)材料潛在的意義,從而使學(xué)習(xí)具有意義。)
4、鞏固應(yīng)用
例1-3是課本原題,由于是第一節(jié)課所以題目類型較基礎(chǔ)
最后解決起始問題:今天是星期二,再過8n天后的那一天是星期幾?
解:8n=(7+1)n=Cn07n+Cn17n-1+Cn27n-2+…+Cnn-17+Cnn
因?yàn)镃nn前面各項(xiàng)都是7的倍數(shù),故都能被7整除.
因此余數(shù)為Cnn=1
所以應(yīng)為星期三
四、回顧小結(jié):
通過學(xué)生主動(dòng)探索的學(xué)習(xí)過程,使學(xué)生清晰的掌握二項(xiàng)式定理的內(nèi)容,更體會(huì)到了二項(xiàng)式定理形成的思考方式,為后繼課程(n次獨(dú)立重復(fù)實(shí)驗(yàn)恰好發(fā)生k次)的學(xué)習(xí)打下了基礎(chǔ)。
而二項(xiàng)式定理內(nèi)容本身對解釋二項(xiàng)分布有很直接的功效,因?yàn)槎?xiàng)分布中所有概率和恰好是二項(xiàng)式。
課后記:
準(zhǔn)備這節(jié)課,我主要思考了這么幾個(gè)問題:
(1)這節(jié)課的教學(xué)目的“使學(xué)生掌握二項(xiàng)式定理”重要,還是“使學(xué)生掌握二項(xiàng)式定理的形成過程”重要?我反復(fù)斟酌,認(rèn)為后者重要。于是,我這節(jié)課花了大部分時(shí)間是來引導(dǎo)學(xué)生探究“為什么可以用組合數(shù)來表示二項(xiàng)式定理中各項(xiàng)的二項(xiàng)式系數(shù)?”
?。?)學(xué)生怎樣才能掌握二項(xiàng)式定理?是通過大量的練習(xí)來達(dá)到目的,還是通過學(xué)生對二項(xiàng)式定理的形成過程來記憶?正如前面所說“學(xué)問之道,問而得,不如求而得之深固也”。我還是要求學(xué)生自主的去探索二項(xiàng)式定理。這樣也符合以教師為主導(dǎo)、學(xué)生為主體、師生互動(dòng)的新課程教學(xué)理念。
?。?)準(zhǔn)備什么樣的例題?例題的目的是為了鞏固本節(jié)課所學(xué),例題1是很直接的二項(xiàng)式定理內(nèi)容的應(yīng)用;為了更好的讓學(xué)生體會(huì)到二項(xiàng)式定理形成過程中的思考問題的方式,并培養(yǎng)學(xué)生知識的遷移能力,我增加了例題,但是難免還有一些有不足之處,希望各位老師能不吝賜教。謝謝!
【二項(xiàng)式定理說課稿】相關(guān)文章: