勾股定理說課稿

時間:2022-02-05 15:55:55 說課稿

勾股定理說課稿(15篇)

  作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫說課稿,編寫說課稿助于積累教學經驗,不斷提高教學質量。我們應該怎么寫說課稿呢?下面是小編為大家整理的勾股定理說課稿,僅供參考,大家一起來看看吧。

勾股定理說課稿(15篇)

勾股定理說課稿1

  一、教材分析

 ?。ㄒ唬┙滩牡匚?/p>

  這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 ?。ǘ┙虒W目標

  1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。

  3、情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。

 ?。ㄈ┙虒W重點

  經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析

  學情分析:

  七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。

  另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:

  結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。

  把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、教學過程設計

 ?。ㄒ唬﹦?chuàng)設情境,提出問題

 ?。?)圖片欣賞勾股定理數形圖

  1955年希臘發(fā)行美麗的勾股樹

  20xx年國際數學的一枚紀念郵票

  大會會標

  設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

 ?。?)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié)。

 ?。ǘ嶒灢僮髂P蜆嫿?/p>

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

 ?。ㄈ┗貧w生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

 ?。ㄋ模┲R拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

 ?。ㄎ澹└形蚴斋@布置作業(yè)

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習題2.1

  2、搜集有關勾股定理證明的資料。

  四、板書設計

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設計說明:

  1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

  圖文搜集自網絡,如有侵權,請聯系刪除。

  鐵樹老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴

勾股定理說課稿2

  尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。

  一、教材分析:

  (一) 教材的地位與作用

  從知識結構上看百度一下,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具備相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節(jié)課的難點,我將引領學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引領學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。

  首先,情境導入 古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的探索過程是本節(jié)課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發(fā)現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用“數格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具備局限性。因此教師應引領學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態(tài)演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環(huán)節(jié)層層深入步步引領,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引領者與合作者”這一教學理念。學生會發(fā)現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數學的精巧、優(yōu)美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運用”的梯度設計了如下三組習題。

 ?。?)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

  第五步 溫故反思 任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業(yè),分層作業(yè)體現了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發(fā)學生再創(chuàng)數學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

勾股定理說課稿3

  (一)創(chuàng)設問題情境,引入新課:

  在這一環(huán)節(jié)中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。

  (二)實踐猜想

  本環(huán)節(jié)要圍繞以下幾個活動展開:

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現。

  4、用恰當的語言敘述你的結論

  在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發(fā)展區(qū),面向不同層次的每一名學生,每一名學生都有參與數學活動的機會,最后運用恰當的語言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;

  1)學生的參與意識與動手能力。

  2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。

  3)數形結合的思想方法及歸納能力。

  (三)推理證明

  八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。

  1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?

  2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?

  為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現創(chuàng)造的愉悅,有效的突破了難點。

勾股定理說課稿4

  一、 教材分析

 ?。ㄒ唬┙滩牡匚?/p>

  這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 ?。ǘ┙虒W目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。

 ?。ㄈ┙虒W重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  1、創(chuàng)設情境,提出問題

  2、實驗操作,模型構建

  3、回歸生活,應用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

 ?。ㄒ唬﹦?chuàng)設情境提出問題

 ?。?)圖片欣賞 勾股定理數形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

 ?。?) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火

  設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié)。

  二、實驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系

  設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎 (割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

  三?;貧w生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題 你能解決所提出的問題嗎

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維. 情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎

  設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。 探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么 試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么

  作業(yè):1、課本習題

  2、1 2、搜集有關勾股定理證明的資料。

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  a2 b2 c2

  設計說明::1。探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

勾股定理說課稿5

  一、說教材

  勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

  據此,制定教學目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學重點:勾股定理的證明和應用。

  教學難點:勾股定理的證明。

  二、說教法和學法

  教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

  1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓同學們主動參與學習全過程。

  2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  三、教學程序

  本節(jié)內容的教學主要體現在學生動手、動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設計如下:

 ?。ㄒ唬﹦?chuàng)設情境 以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

  2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。

  3、板書課題,出示學習目標。

 ?。ǘ┏醪礁兄?理解教材

  教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

 ?。ㄈ┵|疑解難 討論歸納

  1、教師設疑或學生提疑。如:如何證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)同學們的表現欲。

  2、教師引導學生按照要求進行拼圖,觀察并分析;

 ?。?)這兩個圖形有什么特點?

 ?。?)你能寫出這兩個圖形的面積嗎?

  (3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

 ?。ㄋ模╈柟叹毩?強化提高

  1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。

  2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

 ?。ㄎ澹w納總結 練習反饋

  引導同學們對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,同學們獨立完成。

  本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理說課稿6

 說教材

  本課時是北師大版八年級(上)數學第14章第二節(jié)內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

  1。知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

  2。過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。 3。情感與態(tài)度目標:感受數學在生活中的應用,感受數學定理的美。 教學重點:勾股定理的應用。 教學難點:勾股定理的正確使用。 教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

  說教法和學法

  1。以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。 2。切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。 3。通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  教學程序

  本節(jié)內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設置如下: 一?;仡檰枺汗垂啥ɡ淼膬热菔鞘裁矗?勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。 二。新授課例1。如圖所示,有一個圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A點相對的C點處的食物,沿圓柱側面爬行的最短路線是多少?(課本P57圖14。2。1)

 ?、賹W生取出自制圓柱,,嘗試從A點到C點沿圓柱側面畫出幾條路線。思考:那條路線最短? ②如圖,將圓柱側面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎? ③螞蟻從A點出發(fā),想吃到C點處的食物,它沿圓柱側面爬行的最短路線是什么?

  思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發(fā)現“兩點之間的所有線中,線段最短”。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發(fā)現螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發(fā)現了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2。(課本P58圖14。2。3) 思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0。8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可見卡車能順利通過 。詳細解題過程看課本 引導學生完成P58做一做。 三。課堂小練 1。課本P58練習第1,2題。 2。探究: 一門框的尺寸如圖所示,一塊長3米,寬2。2米的薄木板是否能從門框內通過?為什么?

  四。小結直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現實生活中的許多問題,達到事倍功半的效果。

勾股定理說課稿7

尊敬的各位評委、老師:

  您們好。

  我是臨沂市蒼山縣實驗中學的xx。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。

  一、教材分析:

 ?。ㄒ唬┙滩牡牡匚慌c作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

  從學生們認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數學文化為主線,激發(fā)學生們熱愛祖國悠久文化的情感。

 ?。ǘ┲攸c與難點

  為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼死蠋焸兝脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

  學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國的數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。

  第一步情境導入古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過程是本節(jié)課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發(fā)現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用“數格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面“勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法,“補”的方法,有的學生可能會發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態(tài)演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發(fā)現兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數學的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照“理解—掌握—運用”的.梯度設計了如下三組習題。

 ?。?)對應難點,鞏固所學;

 ?。?)考查重點,深化新知;

 ?。?)解決問題,感受應用

  第五步溫故反思任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業(yè),分層作業(yè)體現了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發(fā)學生再創(chuàng)數學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

勾股定理說課稿8

  一、 教材分析

  1. 教材的地位和作用

  它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發(fā)展中起著重要的作用。

  因此他的教育教學價值就具體體現在如下三維目標中:

  知識與技能:

  1、經歷勾股定理的探索過程,體會數形結合思想。

  2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發(fā)現的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學生們的數學語言表達能力和初步的邏輯推理能力。

  情感、態(tài)度與價值觀:

  1、通過對勾股定理歷史的了解,感受數學文化,激發(fā)學習興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生們的合作意識和然所精神。

  3、讓學生們通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學習研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學習方式。

  由于八年級的學生們具有一定分析能力,但活動經驗不足,所以

  本節(jié)課教學重點:勾股定理的探索過程,并掌握和運用它。

  教學難點:分割,補全法證面積相等,探索勾股定理。

  二..教法學法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

  先從學生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生們自己的課堂。

  學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發(fā)現新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。

  三、 教學程序設計

  1、 故事引入新課,激起學生們學習興趣。

  牛頓,瓦特的故事,讓學生們科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發(fā)現引入新課。

  2、探索新知

  在這里我設計了四個內容:

 ?、偬剿鞯妊苯侨切稳叺年P系

 ?、谶呴L為3、4、5為邊長的直角三角形的三邊關系

 ?、蹖W生們畫兩直角邊為2,6的直角三角形,探索三邊的關系

 ?、苋厼閍、b、c的直角三角形的三邊的關系,(證明)

 ?、莨垂啥ɡ須v史介紹,讓學生們體會勾股定理的文化價值。

  體現從特殊到一般的發(fā)現問題的過程。

  3、新知運用:

 ?、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

 ?、谠谥苯侨切沃?,已知∠ B=90° ,AB=6,BC=8,求AC.

 ?、垡鲆粋€人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

 ?、苋鐖D,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

  4、小結本課:

  學完了這節(jié)課,你有什么收獲?

  老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節(jié)課學習它。

勾股定理說課稿9

  一、教材分析

 ?。ㄒ唬?、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。課標要求學生必須掌握。

 ?。ǘ?、教學目標

  1、知識技能:1理解并會證明勾股定理的逆定理;

  2會應用勾股定理的逆定理判定一個三角形是否為直角三角形; 3知道什么叫勾股數,記住一些覺見的勾股數.

  2、過程與方法:通過對勾股定理的逆定理的探索和證明,經歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數形結合”方法的應用。

  3、情感、態(tài)度價值觀 培養(yǎng)數學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統一的關系。

 ?。ㄈ?、學情分析:

  盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。 教學重點:勾股定理逆定理的應用

  教學難點:勾股定理逆定理的證明

  二、教學過程

  本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的。

 ?。ㄒ唬土暬仡?/p>

  復習回顧與直角三角形、勾股定理有關的內容,建立新舊知識之間的聯系。

  (二)創(chuàng)設問題情境

  一開課我就提出了與本節(jié)課關系密切、學生用現有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)

  造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。

 ?。ㄈW生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)

  因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

  接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  在同學們完成證明之后,同時讓學生總結互逆命題、互逆定理的關系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

 ?。ㄋ模┙M織變式訓練

  本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習,循序漸進,由淺入深。培養(yǎng)了學生靈活轉換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。讓學生知道勾股逆定理的用途,激發(fā)學生的學習興趣。我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

 ?。ㄎ澹w納小結,納入知識體系

  本節(jié)課小結先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養(yǎng)能力方面,比如輔助線的添法,數形結合的思想,并

  告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

 ?。┳鳂I(yè)布置

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數學的信心。第二題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質,發(fā)展學生的個性有積極作用。

  三、說教法學法與教學手段

  為貫徹實施素質教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據本節(jié)課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯系學生現有的經驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發(fā)現知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

勾股定理說課稿10

  尊敬的各位領導、各位老師,大家好:

  我叫李朝紅,是第十四中學的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。

  一、教材分析

  1、教材的地位和作用:

  在學習本節(jié)課之前學生已經學習了勾股定理,全等三角形的判定等相關知識,為本節(jié)課的學習打好了基礎,學習好本節(jié)課不但可以鞏固學生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關知識的學習做好了鋪墊。

  2、教學目標

  教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵??紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標

  知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。

  過程與方法:通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成

  過程,體會數形結合和由特殊到一般的數學思想,進一步提高學生分析問題、解決問題的能力。

  情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.

  3、重點難點

  本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點

  重點:理解并掌握勾股定理的逆定理,并會應用。

  難點:理解勾股定理的逆定理的推導。

  二、教法學法分析

  八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結合的方法,老師為主導,學生為主體,充分調動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。

  教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。

  三、教學過程分析:

 ?。ㄒ唬﹦?chuàng)設情景,引入新課

  1、展示圖片:古埃及人制作直角的方法

  2、讓學生試一試用一根繩子確定直角

  設計意圖:通過古埃及人制作直角的方法,提出讓學生動手操作,進而使學生產生好奇心:“這樣就能確定直角嗎”,激發(fā)學生的求知欲,點燃其學習的激情,充分調動學生的學習積極性 ,同時也使學生感受到幾何來源于生活,服務于生活的道理,體會數學的價值。

 ?。ǘ﹦邮謾z測,提出假設

  在本環(huán)節(jié)中通過情境中的問題,引導學生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

  上面三組線段為邊畫出三角形,猜測驗證出其形狀。

  再引導啟發(fā)誘導學生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學生足夠的時間和空間,以平等身份參與到學生活動中來,對其實踐活動予以指導。讓學生通過作圖、測量等實踐活動,給出合理的假設與猜測。整個環(huán)節(jié)通過設置的問題串,引導學生動手、動腦、動口相結合,激活學生的思維,培養(yǎng)學生嚴謹的科學態(tài)度,合理的推測能力,嚴密的邏輯思維能力和靈活的動手實踐能力。

  (三) 探索歸納,證明假設:

  勾股定理逆定理的證明與以往不同,需要構造直角三角形才能完成,如何構造直角三角形就成為解決問題的關鍵。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先

  1、 讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現了什么情況?并請學生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

  2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

  在這個過程中,首先讓學生從特殊的實例中動手操作到證明,學生自然地聯想到了全等三角形的判定,進而由特殊到一般發(fā)現三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關系。

  設計意圖:讓學生從特殊的實例動手到證明,進而由特殊到一般,順利地利用構建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現從直觀印象向抽象思維的轉化,同時學生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數學思想在實際中的應用。

  這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

 ?。ㄋ模W以致用、鞏固提升

  本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學生仿照課本上的例題,獨立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數,我們稱為勾股數。第二題我改變題的形式,把一些符合a+b=c的三角形放入網格中讓學生運用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學生運用勾股定理及其逆定理證明并求解。

  設計意圖:采用啟發(fā)教學與誘導教學方法相結合的方法分層練習,由淺入深地逐步提高學生解決實際問題的能力,達到鞏固知識,學以致用的目的

 ?。ㄎ澹┗仡櫩偨Y,強化認知

  課堂小結以填空體的形式檢測、歸納總結

  設計意圖:讓學生以填空題的形式進行總結,不僅能夠起到檢測的目的,而且?guī)椭鷮W生理清知識脈絡,起到重點強調,產生高度重視的效果。

  (六)作業(yè)布置

  教材33頁練習

  設計意圖:加強學生對勾股定理逆定理的理解,使學生的練習范圍拓展到多個題型。

  教學反思:本節(jié)課以學生為主體、教師為主導,通過啟發(fā)與誘導,使學生動手操作、動腦思考、動口表達,讓學生在實踐與探究中發(fā)揮自我,充分調動了學生的自主性與積極性,整個過程注重了學生課上知識的形成與鞏固,以及學生各方面素質的培養(yǎng)??傊竟?jié)課的知識目標基本達成,能力目標基本實現,情感目標基本落實。

  以上是我對本節(jié)課的理解,還望各位老師指正。

勾股定理說課稿11

  一、教材分析:

  勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。

  教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

  據此,制定教學目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學重點:

  勾股定理的證明和應用。

  三、教學難點:

  勾股定理的證明。

  四、教法和學法:

  教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

  以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

  切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  五、教學程序

  :本節(jié)內容的教學主要體現在學生動手、動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設計如下:

  (一)創(chuàng)設情境 以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

  2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。

  3、板書課題,出示學習目標。

  (二)初步感知 理解教材

  教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

  (三)質疑解難、討論歸納:

  1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現欲。

  2、教師引導學生按照要求進行拼圖,觀察并分析;

  (1)這兩個圖形有什么特點?

 ?。?)你能寫出這兩個圖形的面積嗎?

 ?。?)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習 強化提高

  1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。

  2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

  (五)歸納總結 練習反饋

  引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

  本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理說課稿12

  一、教材分析

  本節(jié)課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時.在本節(jié)課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發(fā)揮和發(fā)展。

  在探求勾股定理的過程中,蘊涵了豐富的數學思想。把三角形有一個直角“形”的特點轉化為三邊之間的“數”的關系,是數形結合的典范;把探求邊的關系轉化為探求面積的關系,將邊不在格線上的圖形轉化為可計算的格點圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關系,再猜測一般直角三角形的三邊關系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要創(chuàng)設問題串,提供學生活動的方案,讓學生在活動中思考,在思考中創(chuàng)新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關直角三角形的計算問題.

  二、教學目標

  1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發(fā)展將未知轉化為已知,由特殊推測一般的合情推理能力。

  2、讓學生經歷拼圖實驗、計算面積的過程,在過程中養(yǎng)成獨立思考、合作交流的學習習慣;讓各類型的學生在這些過程中發(fā)揮自己特長,通過解決問題增強自信心,激發(fā)學習數學的興趣;通過老師的介紹,感受勾股定理的文化價值.

  3、能說出勾股定理,并能用勾股定理解決簡單問題.

  三、教學重點

  勾股定理的探索過程.

  四、教學難點

  將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

  五、教學方法與教學手段

  采用探究發(fā)現式教學,提供適當的問題情境.給學生自主探究交流的空間,引導學生有目的地探索.

  六、教學過程

 ?。ㄒ唬﹦?chuàng)設情境 提出問題

  1.同學們,我們已經學過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

  2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

  3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題.板書:直角三角形三邊數量關系.

 ?。ㄟ@是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發(fā),揭示這節(jié)課產生的根源,符合學生的認知心理,也自然地引出本節(jié)課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)

 ?。ǘ嵺`探索 猜想歸納

  1、用什么方法來探求板書:直角三角形三邊數量關系呢?

  回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

 ?。▽W生討論)

  課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

  今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.

 ?。◤膶W生已有的學習經驗出發(fā),將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

  2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?

 ?。ㄍ焕媒處熖峁┑膶W案,合作拼圖。)

  通過拼圖,你有什么發(fā)現?

  (如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發(fā)了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)

  3、拼圖活動引發(fā)我們的靈感;運算推演

  證實我們的猜想.為了計算面積方便,我們可

  將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).

 ?。▽W生容易回答SP=9,SQ=16。)

  你是如何得到的?

 ?。梢詳祱D形中的小方格的個數,也可以通

  過正方形面積公式計算得到。)

  如何計算 ?

 ?。ǖ那蠓ㄊ沁@節(jié)課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)

  4、肯定學生的研究成果,進而讓學生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?

 ?。ò褕D形進行“割”和“補”,即把不能利用網格線直接計算面積的圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)

  5、再給出直角邊為5和3的直角三角形(圖9),讓學生計算分別以三邊作為邊所作的正方形面積.

 ?。ㄟ@是轉化思想,也是“割補”方法的再一次應用.在

  前面的探求過程中有的學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)

  通過計算,你發(fā)現這三個正方形面積間有什么關系嗎?

  (SP+SQ=SR,要給學生留有思考時間.)

  6、通過以上的實驗、操作、計算,我們發(fā)現以直角三角形的各邊為邊所作的正方形的面積之間有什么關系呢?同學們還有什么疑問嗎?

 ?。ㄒ灾苯沁厼檫吽鞯恼叫蔚拿娣e和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)

  利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時,所得到的正方形面積之間也有如上關系嗎?

  將網格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

 ?。ɡ脦缀萎嫲宓母咝?、動態(tài)性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)

  7、我們這節(jié)課是探索直角三角形三邊數量關系.至此,你對直角三角形三邊的數量關系有什么發(fā)現?

 ?。娣e是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)

 ?。ㄟ@一問題的結論是本節(jié)課的點睛之筆,應充分讓學生總結,交流,表達.)

  8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.一段緊張的探索過程之后,播放一段有關勾股歷史的錄音.

 ?。ㄟ@樣既活躍了課堂氣氛,又展現了勾股歷史,激發(fā)學生熱愛祖國悠久歷史文化,

  激勵學生發(fā)奮學習的情感.)

  9、閱讀課本,提出問題

  (讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)

 ?。ㄈ┱n堂練習 鞏固新知

  1.完成課本第45頁練習第1題、第2題.

 ?。?)求下列直角三角形中未知邊的長:

 ?。?)求下列圖中未知數x、y、z的值:

 ?。ǔ浞掷谜n本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

  2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發(fā)生。請問同學們:

 ?。?)這幾位同學為什么不走正路,走斜“路”?

 ?。?)他們知道走斜“路”比正路少走幾步嗎?

 ?。?)他們這樣這樣做,值得嗎?

  (這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)

 ?。ㄋ模┱n堂小結 布置作業(yè)

  1、通過本節(jié)課的學習,大家有什么收獲?有什么疑問?你認為還有什么要繼續(xù)探索的問題?

 ?。▽W生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統化,提高學生的綜合表達能力.如果學生沒有提出繼續(xù)要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發(fā)學生不滿足于現狀,有不斷提出新問題的欲望,即培養(yǎng)學生的創(chuàng)新意識.)

  2、作業(yè)

 ?。?)課本第471頁第2題,并完成第45頁的實驗。

 ?。?)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節(jié)課的學習

  和從網上或書本上自學到的知識寫一篇有關勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

  n

 ?。ㄗ鳂I(yè)的多元化、多層次,有利于全體學生的全面素質發(fā)展。)教育大全

  七、教學設計說明:

  本節(jié)課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.

  本節(jié)課從學生的原有認知出發(fā)提出問題,揭示這節(jié)課產生的根源,符合學生的認知心理.教科書設計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎上,為了更好地展示這一探索過程,本節(jié)課先讓學生回顧利用圖形面積探求數學公式的經歷,以此確定研究方法.繼而設計了剪紙活動,從中引發(fā)學生的猜想,再利用幾何畫板這一工具帶領學生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學生充分經歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點,應讓學生充分地思考、討論、總結方法.通過對特殊到一般的考查,讓學生主動建立由數到形,由形到數的聯想,從中使學生不斷積累數學活動的經驗,歸納出直角三角形三邊數量之間的關系.在教學中鼓勵學生采用觀察分析,自主探索,合作交流的學習方法,培養(yǎng)學生主動的動手,動腦,動口的學習習慣和能力,使學生真正成為學習的主人.

  除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神.

  練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.題目的設計中滲透了德育教育,拓展了學生的空間思維,使得一節(jié)幾何課全面地考查了學生的各方面思維.

  讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.

  作業(yè)為了達到提高鞏固的目的,提供給學生網址是為了拓展學生的視野,以期學生能主動地探求對勾股定理更深入的認識.

勾股定理說課稿13

  今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節(jié)的第一課時。

  一、教學背景分析

  1、教材分析

  本節(jié)課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學情分析

  通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。

  3、教學目標:

  根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:

  知識與能力目標:了解勾股定理的發(fā)現過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現問題總結規(guī)律的意識和能力.

  過程與方法目標:通過創(chuàng)設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。

  情感態(tài)度價值觀目標:感受數學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。

  4、教學重點、難點

  通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學

  重難點為探索和證明勾股定理.

  二、教材處理

  根據學生情況,為有效培養(yǎng)學生能力,在教學過程中,以創(chuàng)設問題情境為先導,運用直觀教具、多媒體等手段,激發(fā)學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

  三、教學策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發(fā)現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

  2、學法

  “授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘學生的創(chuàng)新精神。

  3、教學模式

  根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

  四、教學過程

 ?。ㄒ唬﹦?chuàng)設情境,引入新課

  利用多媒體課件,給學生出示20xx年國際數學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現實生活中提出趙爽弦圖,激發(fā)學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。

 ?。ǘ┮龑W生,探究新知

  1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創(chuàng)設感知情境,提出問題:現在也請你觀察,看看有什么發(fā)現?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學生再次感知發(fā)現的規(guī)律。

  2、提出猜想:在活動1的基礎上,學生已發(fā)現一些規(guī)律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創(chuàng)造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現了利用面積相等去證明勾股定理的方法。培養(yǎng)了學生的發(fā)散思維、一題多解和探究數學問題的能力。

  4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數量關系即勾股定理,培養(yǎng)了學生的語言表達能力和歸納概括能力。

 ?。ㄈ┓答佊柧?,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養(yǎng),設計一組有坡度的練習題:A組動腦筋,想一想,是本節(jié)基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯系,培養(yǎng)學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。

 ?。ㄋ模w納小結,深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

 ?。ㄎ澹┎贾米鳂I(yè),拓展新知

  讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

 ?。┌鍟O計,明確新知

  本節(jié)課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

勾股定理說課稿14

  一、勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用. 據此,制定教學目標如下:

  1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.

  3.情感與態(tài)度目標:感受數學在生活中的應用,感受數學定理的美.

  教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用.

  教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.

  二.說教法和學法

  1.以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.

  2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.

  3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望.

  三、教學程序本節(jié)內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.

勾股定理說課稿15

尊敬的各位評委、老師,大家好!

  我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。

  教材分析:

  如果說數學思想是解決數學問題的一首經典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節(jié)的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。

  勾股定理的發(fā)現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

  新課標下的數學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據本節(jié)在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節(jié)教學目標如下:

  1、探索并利用拼圖證明勾股定理。

  2、利用勾股定理解決簡單的數學問題。

  3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。

  本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:

  勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。

  為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:

  教法分析:

  新課程標準強調要從學生已有的經驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。

  學法分析

  學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。

  為了充分調動學生的學習積極性,創(chuàng)設優(yōu)化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。

  以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學

  1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。

  2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。

  3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。

  4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節(jié)內容的鞏固與升華。

  說創(chuàng)新點:

  為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發(fā)揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

  教學中我注重人文環(huán)境的創(chuàng)設,使數學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。

  以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。

【勾股定理說課稿】相關文章:

1.勾股定理說課稿